zebrazerzkidai.blogg.se

Tensor field curved space
Tensor field curved space









Dillen, F., Goemans, W., Van de Woestyne, I., Translation surfaces of Weingarten type in 3-space, Bull. Dillen, F., Verstraelen, L., Zafindratafa, G., A generalization of the translation surfaces of Scherk, Diff. Dillen, F., Van de Woestyne, I., Verstraelen, L., Walrave, J.T., The surface of Scherk in E3: A special case in the class of minimal surfaces defined as the sum of two curves, Bull. Dierkes, U., Singular minimal surfaces, Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, Heidelberg (2003), 176-193. Dierkes, U., A Bernstein result for enery minimizing hypersurfaces, Cal. De, U.C., Barman, A., On a type of semisymmetric metric connection on a Riemannian manifold, Publ. Darboux, J.G., Theorie Generale des Surfaces, Livre I, Gauthier-Villars, Paris, 1914. Chaubey, S.K., Yildiz, A., Riemannian manifolds admitting a new type of semisymmetric nonmetric connection, Turk. Böhme, R., Hildebrant, S., Taush, E., The two-dimensional analogue of the catenary, Pac. Aydin, M.E., Mihai, A., Translation hypersurfaces and Tzitzeica Translation hyper-surfaces of the Euclidean space, Proc. Aydin, M.E., Erdur, A., Ergut, M., Singular minimal translation graphs in Euclidean spaces, J. A., Beyendi, S., Riemannian submersion endowed with a semi-symmetric non-metric connection, Konuralp J. S., Chafle, M.R., On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Tensor, 55(2)(1994), 120–130.

tensor field curved space

S., Chafle, M.R., A semi-symmetric non-metric connection on a Riemannian manifold, Indian J.











Tensor field curved space